AD-A172 583  NINIMIZING TH£ REFLECTION OF ELECTRMBIE"C WES
SURFACE INPEDANCE(CU) NISCONSIN UNIV-MADISON MATHEMAT l
RESERRCH CENTER T J BRIDGES ET AL. JUL 86 NRC-TSR-2942

UNCLASSIFIED DARG29-80-C-0041 F/6 20/




EEEE
e,
K EEEEEFITH |.H||““I|

10

l
I

|-|
t————

———

125

—
———

___

I




MRC Technical Summary Report #2942

© MINIMIZING THE REFLECTION OF
ELECTROMAGNETIC WAVES BY
SURFACE IMPEDANCE

T. J. Bridges, G. Chen and G. Crosta

AD-A172 585

k. Mathematics Research Center ;
: University of Wisconsin—Madison =3
- 610 Wainut Street N
¢ . . - t‘:\
N Madison, Wisconsin 53705 DT‘C ::
» ELECTE ‘:-“
July 1986 o &
. 0CT 8 1886 =
' A
’
ived J 20, 1986 R
(Receive une ) B ::,;.
>
e
- R
_ Approved for public release A
. INC FiLE COPY Distribution uniimited N
. &
o\)
&
. Sponsored by ':Q
>
U. S. Army Research Office National Science Foundation i
P. 0. Box 12211 Washington, DC 20550 -
Regsearch Triangle Park

North Carolina 27709 _:.:




UNIVERSITY OF WISCONSIN-MADISON
MATHEMATICS RESEARCH CENTER

MINIMIZING THE REFLECTION OF ELECTROMAGNETIC WAVES
BY SURFACE IMPEDANCE A

T. J. Bridqes"', G. Chenz"* and G. Crosta3'*.'

L

Technical Summary Report #2942
July 1986

= .

ABSTRACT

In an empty halfspace a point source emits electromagnetic waves of fixed

s frequency and arbitrary polarization. The fields reflected by an imperfectly i
conducting plane, characterized by a constant, isotropic surface impedance, =
are determined by means of the geometrical optics approximation. An ot
optimization method is used to compute the surface impedance, which minimizes 53

a given function of the e.m. fields (e.g. the average energy density) at a
given observation point. The properties of the functions to be minimized are
studied and a set of numerical results is presented and discussed.

AMS (MOS) Subject Classifications: 135105, 49E05, 78AS0

Key Words: electromagnetic waves, geometrical optics; control theory,
minimizing reflection
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:.. I. INTRODUCTION

1 I.1. Problea statement

4

‘ We consider an optimization problem related to the reflection of electromagnetic
: waves. A point source of monochromatic waves, characterized by a dipole vector, is

o

> located in an empty halfspace and illuminates an unbounded plane surface, having constant

surface impedance. If the latter satisfies some properties to be defined below, the

¢

< incoming wave energy is partly absorbed and partly reflected. By means of the geometrical
4

. optics approximation the reflected fields are evaluated. Since they are functions of

position as well as other parameters, we state the following problems:

" a) given an observation point in the halfspace, which need not coincide with the
.

1‘_ source, determine e.g. how the e.m. energy density, or the real part of the

% modulus of the Poynting vector at that point, depend on the surface impedance as

its real and imaginary part are varied (direct problem);
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given an observation point as above, find the value of the surface impedance
within a prescribed set which minimizes either of the above mentioned field

functions (minimization problem);

after finding the optimal impedance value as of problem b), determine how either

of the above field functions depends on position as the observation point is

moved (position sensitivity problem).
Problem a) consists of making the reflecting plane almost “invisible" to a particular
obgserver. This study is our first approach towards the widely publicized "stealth”
problem, which aims at minimizing the radar cross section of some obstacles. The model we
adopt is simplified, however, with respect to any practical situation: nevertheless we
believe our methods and results are helpful in outiining some features of the general
problem.

In the following we introduce the background material. In Section II we calculate
the first two terms in the geometrical optics expansion of the reflected magnetic and
electric fields. In Section III we state the optimization problems for some objective
functions, which depend on the complex surface impedance through the reflected fields.
Mnimization of said functions is carried out by a steepest descent method, incorporated

into a recently developed computer code. Several results are shown and discussed.

I.2. The impedance boundary condition

Let D be a halfspace; x = (x,,xz,xa), where Xq > d, denotes a point in D and

9D the x4 = 4 plane. Then B will stand for D U 3D. The electromagnetic fields

(d4,B) considered herewith are complex quantities having a suppressed time dependence
exp(-iwt). Both H and B satisfy homogeneous Maxwell's equations everywhere in D,
except at =x,, where the source of a monochromatic spherical wave is located (see Section
I.5). We assume that the x5 = 4 plane is an imperfect conductor. In order to account
for the nonzero resistance of the latter and for the related inductive effects, the

following impedance boundary condition is specified:
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axXE=%nxnxH, at 3D (1.1)

where n 1s the outward unit normal vector and 2% is a complex valued 3 x 3 matrix,

In the most general case its entries may depend on = ¢ 3D.

named the surface impedance.

It can be shown (Jones [1], pp. 511 f£f) that, if:

£+2" >0, (1.2)

i.e. if % + z' is positive definite, then

ia the hermitian conjugate of E,

where z'

(1.1) plus some adequate radiation conditions are sufficient for Maxwell's equations to

have a unique solution in D.

If Z is replaced by the complex scalar 2z := p + it, (1.2) becomes:

5 p=Rez>0, (1.3) vy
o :’u
0 which is easily seen to yield a power dissipative houndary condition. qf.
. e
: Before considering our problems in detail, we must comment on (1.1). It can e.g. be ALy
?

obtained under the hypothesis that fields penetrating from the surface into the material

z
' C..
4 fall off as (Collin (2], pp. 16-17) e.q.: L
] )
.
.- E(x) = B(x,,x;,4) exp(-(d = x3)/8,), 1x;¢ 4 (1.4) i
. R
d where 6’, the "skin depth”, is related to conductivity o, angular frequency w and .y

vacuum magnetic permeability Uo by:

v §_ = /2/mu°o . (1.5) :

If the material is isotropic, it can be shown that the corresponding surface impedance

reads:

z = (1 + 1)/06. .

Moreover, for (1.5) to hold it is required that:

Fad =,
. (1.7) R

y §_ << =
mluoeo

R‘ .

(1.6) and (1.7) respectively shall be used as a physical realizability constraint in

t

?
AYS

'—"

the minimization problem and as an "a posteriori” inequality for the validity range of our

e

-t model.
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; 1.3. The geometrical optics solution method *
N . [N
According to geometrical optics and diffraction theory (Luneburg (3], Keller [4], -
o
%,
“7' Klein and Kay [S]) the asymptotic solution to a diffraction problem may be expressed as 4“1,
3 ,
1 the sum of the incident and the scattered fields: 'g'
2 O
"
A (m,2) = (nl,g5) + (,55) , (1.8)
where the scattered field (WS,E°) is further decomposed into the sum of the reflected
)
5 and diffracted fields: “
b ‘tx.
' (n5,25) = (2R, 5F) + (uP,20) . (1.9) e
Y - {
: All three fields satisfy Maxwell's equations. In our analysis we assume that there is no -
diffraction, {i.e. (ID,SD) = (0,0). We then postulate that the reflected field has a P‘:
r
: -
) uniformly valid asymptotic expansion of the form: ;-_
‘. -\
\ S
-
¥ = N
(mR(x),BR(x)) ~ eikS(X) ¥ ™ (x), 2™ (x)) , (1.10)
n .
n=0 (ik) ",
o Q:j:
4 where k := w/c and ¢ := 1/(eouo)1/2. (IR.BR) is an outgoing wave satisfying the :.'-‘
< ..'-
: homogeneous Maxwell's equations and radiation conditions. 7;.'
It is easily shown that S(°¢), l‘"). !‘") satisfy respectively: —
. .
N |9s|2 = 1 (eikonal equation) (1.11) o
:
J and, along a ray: r;.
[
-
248" + (v2Z5)p() - v2g(n-1) (1.12) "
n=20,12,... ..
22,80 + (725)m() - y2u(n-1), (1.13) s
- ..:‘
with 8"") = o, B("1) = o, where: o
LY .l
W,
a,f(x(y)) = VS(x) * Vf(x(y)) (1.14) oy,
e
' is the Aifferentiation along a ray. '
u'.‘
The boundary condition (1.1) becomes: o
l. \!
xR -gnxnx 8) ~nx Bl «~xnx nx BY) at 3D. (1.15) e
A
N
In some special cases, e.g. with TE and TM waves, Maxwell's equations reduce to 6 5:.‘
scalar wave equations with uncoupled impedance BCs (Senlor {6]). This was the case with
-l
T AT T T T Ta® L AT TR LT AT R e A, A, NP P O N e et
5, ""~ o e e, -‘.~---- ’-f}.f.' _J"I(f'n‘ B AL
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an earlier work of ours (Chen & Bridges [7]), where we considered a problem for acoustic
vwaves. Por the present problem, no such reduction is possitle, hence the calculations
will be more complicated.

I.4. A preliminary example: a plane wave incident on an impedance plane

To illustrate the basic role of an impedance boundary condition, the following simple
example is considered. An E-polarigzed wave el ;- (o,o,sg) is incident on the (xq,%q)=
plane, where:

=ik(x,comt+x,sina)
Elx) e ' 277, ero . (1.16)

T/ ks

ks

Figure 1. A plane wave incident on an impedance plane.

The x5 = 0 plane is assumed to have the following boundary impedance:

2 0 0
Z = 0 z 0 P Re 2> 0., (1.17)
0 0 z

A straightforward calculation based on Sections I.1 and I.2 gives the following exact

solution for the reflected field:

B = ke sina ~1Kk(x,co0~x,8ina)

Vge + %z sim ° ' (18

Eix) = B5ix) = 05 2f(x) =

-B-

AR < 4

bt

PR A A {

»

LY

v o .
.

f A s o =
N URIRANEINE:

RPN

L/
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k sine o = kz sina .-1k(x1co.u-xzuinu)

afx) = -

’

uo Mg *+ kz simg
W - ina _ -
aRx) = - K com PN kz 8 . 1k(xqcoma-x,8im) r (1.19)
2 U uw + ke sim ’ -
0 0
Bi(x) = 0 .

From the last expressions, the special value:

z = uoc/(aina) (1.20)
implies that the reflected fields vanish everywhere in R;- This example helps us to
point out some facts, which hold in a more general context: (a) the optimal impedance,
which minimizes the reflected field depends upon the angle of incidence of the incoming
wave and (generally) on its frequency, (b) if we lat a = %/2 4in (1.20), we obtain
z = (uoloo)'/z. which does not comply with (1.6), and (c) if we assume
Re z = (uo/eo)1/2 i= 2y (the "free space” impedance, 1z, 3 366.9 Ohm), from (1.5) we
get 0 = ew/2 and Gs/x = 1/t, 4i.e. the wavelength and the penetration depth are

comparable, contrary to the constraint (1.7).

1.5. A spherical electromagnetic wave impinging on an impedance plane

Let an electric dipole antenna with moment ; - (;1,;2.;3) be located at the source
point =g = (0,0,2d), 4 > 0. An impedance plane is located at x; = 4. The reference
frame and the field layout are shown in Figure 2. On the x4 = 4 plane the impedance
boundary condition:

axE=zinxnx (1.22)
subject to (1.3) is satisfied. This is the example we shall consider with greater
detail. 1In order to solve any of the minimization problems listed in Section I.1, we need

the reflected fields at the observation point =g ¢ D. These fields will be evaluated as

explained in Section I.13.
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II. GEOMETRICAL OPTICS APPROXIMATIONS

ITI.1. The potential and the incident fields

The vector potential A is defined by:
Vx A=usm,
V + A = iwugey? (Lorentz gauge condition) ,
where the scalar potential ¢ satisfies:
V¢ = -E + iwA .

Then A and ¢ satisfy a Helmholtz equation. In particular Al, assoclated to

¥ wif
o

.

4

(II,lI), satisfies:

v2al + w2al = -arps(x - x,)

F oy

radiation conditions .

AFAA)

*ls

A .

The solution to (2.3) (fundamental solution or free space Green's function) reads:

»'a

Al = pelkr®,* (2.4)
where r = |x'| = |x - x| = [x% + x% + (xy ~ 2)2}V/2 ana p = -h»uoi/du. We are thus
modelling a dipole antenna emitting spherical waves. The associated incident fields at
any point = ¢ D, x # Xqs are:

8 = (1/ug)7 x & = (x x )& e ¢t = 1/0ke™)

e
]
'a

Bl = (1/e°w)V x Bt '

% -5 '; )

where x° := (x - x)/|x = x| = x"/r'. (See e.g. Jackson, (8], $9.2).

"5

II.2. The boundary condition

L

Since the reflected wave is also spherical, then by Snell's law it diverges from a

virtual point source, which, as Pigure 2 shows, is located at the origin. Two geometries,

sres

gpherical and planar, are involved in the boundary condition. Since ®» = (0,0,-1),

(1.15) and (1.22) yield two scalar equations:

e

zlﬁ - lg - -z!% + lg 1= b1
W - B = 2 - W

which are not sufficient to find (IR,HR). They must be completed by an independent

= b2 )

')

88, 00

L I‘ls'\l$. - " »
N

AN
.'
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scalar equation, i.s.
veatap. (2.8)
Since by and bz in (2.7) are known functions, obtained from (2.5) and (2.6), and since
2 can be written in terms of ®, (2.7) becomes:
ikzh, + 30(33h1 - 31h3) = b,
at X3 - d, “1,X2 (2.9)
ikzhy = zgldghy = 33hy) = by ,
where:
ai denotes the partial derivative w.r. to x4, { = 1,2,3

hi denotes the reflected magnetic field components;

zq has been defined in Section I.4.

II.3. Geometrical optics expansion

Expansion (1.10) for the reflected magnetic field becowmes:

n
1 - %n
ny| =tk e®® § ™ v |, r>a, (2.10)
n=0
h3 “n

since S{=) = r, the coordinate along a ray being r. For convenience we have factored
ik out of the sum. By (2.10) a system of partial differential equations (2.8, 2.9) is
transformed into an algebraic system, which is solved by the identity principle. The
expressions of by and b, are polynomials containing powers of (ik). Then the sets of
equations for (., ,v,,v,) will be obtained by equating the coefficients of given powers
of {ik). Iet us begin with n = 0: by introducing polar coordinates (see caption of
Figure 2 for the notations) the following system is obtained:

(zqcosd + z)uy = zosinbcosewy = by,

(zgcoe® + z)v, = gysinBsinev, = by,, x5 = d, ¥xy,x, (2.11)

sinfBcoswuy + sindsinevy + cosbwy, = 0 ,

where:

-9a

v, .
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> ‘::
\ bgqy 1= (Vuorp)(zoco-O - z)(p3sin6linw + pycosf) + zosinzecon(pzcow - pysine )y A A
bgy = (1/uorp)(z - zgcoed)(pysinfcosp + pycosd) + zoslnzeaim(pzcou - pysim ) -
. 4
j rp = (x% + x% + a2)V/2 o a/coss . N
)
) From (2.11) we get the Oth order component of the reflected magnetic field at xy = d, ‘\,:"
4 .5"
Vx"xzz
N ug = (uQ - SPx)/uorpVy vo = =(UR + 'I‘Px)/uox'ov1 Wwg = YP sirﬁ/votp (2.12) -_:
. where: ’__ g
P := pysing - p,cose Q := p,sinBsing + p,cosd N
R 1= p3ain6coav + p.'cone S := zosinzecoso
. 2 ™~
. T t= zzsin“Osing U := z,cos0 - z
.- V = zgcosd + 2z X := 2z cosd/(zy + z cosd) oy
j Y t= (25 - z cosb)/(zy + z cosb) . (2.13) o
The result stated by (2.12) can be extended Vx4 > 4 by integrating the transport “
> “
-: equation (1.13). This is a straightforward step for n = 0 only, since then the right- -,'{_
- .-
:: hand-side is 0. The required field components are obtained by replacing r, by r in ,;:-
< )
o (2.12), whera r := (x"; + x% + x§)1/2' xy 2> 4. =)
4 The Oth-order reflected electric field components are derived from (2.12) and the _
:' counterpart of (2.6), by applying the identity principle. In analogy with (2.10) they are -::'
.. denoted by (£4.,Ng.%y) and read: ) :‘-
- -\q_
. Eg = zo(vocone - wosinesino) ’
. Ng = =zglugcosd - wysinfeose), W¥x e D (2.14) ~
tg = zpsinb(ugsing - vycose) . .
- In order to obtain higher order components, we may follow the already mentioned -
procedure of applying the identity principle to the algebraic system and solving the -
. corresponding transport equations. This leads to very complex calculations. An -
: alternative approach is suggested by the symmetry properties of the generalized spherical
J p'r:
[ waves appearing in (2.10). By applying a result due to Keller, Lewis, Seckler [9], it can P
be easily shown that ’
. .\‘
; X
. -10=
] :\
n r\




L' B B . M o Sla g 200 pig AU pio a0 ab.an. at gl Son ead 8 v

. vy = (1/2x)B Vo v (2.15)
)
¥ Y1 Yo
g where the Beltrami operator B(*) 1is defined by:
X -
' B(*) 1= (s1n0)"V(3gainddg (+) + (1/81n8032 (+)) . (2.16)
t In our case it can be shown that none of the quantities dealt with are singular at 8 = 0.
~
~ The action of 8(*) on the components given by (2.12) yields:
. Buy = 33quy = (1250 + P(S'gX + S'%g)1cos® - 2X(SJB, + S"P) + UQ -
© (1/ugrv) + zo(UQ = SPX)/ugev? , (2.17)
(- Bug = 32wy + [(YgP + YPy)cosd - YP sin?8]/ugr , (2.18)
)
: where the subscripts © and ¢ denote the partial derivative with regpect to said
e variables, the prime (') denotes division by s8in6 and the double prime (") division by
N sin20. Similarly Bv, is obtained from (2.17) by orderly replacing (ug.Q,8) by
' (vg,=R,T) and their partial derivatives.
Finally, the 1st order components of the reflected electric field are written as
functions of the already calculated 0Oth and 1st order reflected magnetic field
. components and of their partial derivatives with respect to polar coordinates:
Jal
-
\ /Yo 3y  atn8 2%
: E4(r.B,9) = ;:‘; (vqcosd - w,sinﬁsim + cosb 3 C ¥ 55
3
- - sinfsin Yo _ Cos sing a"t) _ _com a"o)
- ? ar r EL) r 8ind d¢
Y
: u 3u du
:.. n1(r,6,¢) = (-u,cose + w1uin0coso - cosb -a—r- + si:ﬁ 3—9-
T 0
» dw dw dw
v 0 co8d cose 0 sing 0
+ sinfcosy 3= * =555 " 7 aind 59 (2-19)
" o 3u du
[~ 0 i 0
o 51(1',0,9) - —- (uy8infsine - v sinfcosy + sinBsing 3¢ + ma—e—
e 0 r
"
ng + cose aul) - sinBcos a"(!0 _ cosd cosp 3"0 . sing Bvo)
> r sind 3¢ sintcos? 3¢ T 39 r sind d¢ *

g:??-' }
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It may be interesting at this point to make a comparison between the asymptotic
expansion we have chosen and other approximations, known as the paraxial and Fresnel's
approximations, also frequently used in electromagnetics. In our case we have started
with the fundamental solution (2.4) and approximated the reflected fields by the 0th
and 1st order terms in the expansion (2.10), which is acceptable whenever kr >> t. On
the other hand the paraxial and Fresnel's approximations, the equivalence of which has
been discussed by Crosta [10) for a scalar case, apply if the fundamental solution is
known in closed form and affects phase factors appearing in the complex exponential
propagator. Closed form fundamental solutions are easily obtained when boundary
conditions are of the Dirichlet or Neumann type, and yield the well-known Rayleigh-
Sommerfeld propagators. The solution corresponding to impedance BCs for the scalar case
has been given by Malyughinetz [11). In this paper the implementation of Malyughinetz's

results will not be considered.
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I1I. PINDING THE OPTIMAL SURFACE IMPEDANCE VALUE \L’?

! I1T.1. Problem statement iy
L]

let us assume that the surface impedance can take on values belonging to either of .

} e

the following sets: 'ia:

Py

2g={zec | 0cp,<Rez<p, |z]<bl (3.1) =

\ -,

v and @,
p : ’

K 2 g ={zezhy | Rez=mz2 , (3.2) .
¥ M

4 hereinafter named "the admissible sets” and denoted by 2,4, whenever no ambiguity 2 :

arises. Equation (3.1) contains in particular the positivity constraint for Re z; (3.2)

‘ '.h.
. represents the physical realizability constraint, discussed in §I.2. ‘e
' et Y denote the index function of Zaar which is 0 if z € Z,4 and ._',-
3 ‘*

elsewhare; then we define the objective functions J,, m = 1,...,4: '{

. 1 L 2

Jy(2) 1= 5 (€Bpix) * Bp(x) + ughp(m) + Hp(x)) + xlel = wy + xlel , (3.3) :
l\-

; Iy0z) 1= [y weav + x|z| =Wy + x]2] , (3.4) t
* 1 » N

4 33(z) = 3 [Bp(m) x Bp(x) |2 ¢ xlz| =Wy« xl2], (3.5) )

4 1 "

Ty(z) 1= 3 [; RelRg(x) x Hp(x)) « mdl + x|e| 3= wy + xle| . (3.6) X

Each of the J,'8 is the sum of a "physical® terw, W, and of an "economical” one, -

§ x|z|1 the purpose of the latter will be clarified at the end of this subsection. The :;
&

term W, is the time averaged reflected energy density at x = (r,9,s) ¢ D, while v, ;‘

results from integrating W, over a bounded domain V QC Dy Wy is the time averaged -

¥ squared modulus of the reflected Foynting vector 8p(x); Wy is the flux of Re(Sp) ':.

» pe
Fl through a given bounded surface L, s.t. [ NAap = ¢, A
» Ry

‘ The J,'s depend on z through the fields. '

We now state the wminimization problem: -

) -

- ~d
: find the surface impedance =z € Z,,, which minimizes one of the J.'s, i.e.: \:
Ll - -.'
.~
« Jul2) = ;in Jefz); m given . (3.7) o
-
ad (A
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This problem will be solved by an iterative procedure, which consists of the steps also
shown by Figure 3:

1 -set k = 0;

2 - given = € Z,4- determine the reflected fields to the desired order of approximation

(one, in our case);

3 -~ compute H:, i1.e. J:, gince zk € 2,41

4 - from J: and its derivative w.r. to z, J:z, defined in §I11.2, determine
k+1 k+ 1
z € zad s.t. Jg < J:,

S - repeat the whole procedure from step n.2 until some stopping condition is met.
In detail, step n.2 requires the solution of a control problem, described by the map:
T & Zyy ~--==> (€703 x ("> = x (3.8)
2 --eo> (Rp, By
where T is a C'(zZ,,) diffeomorphism and z {is the input.
Step n.3 is related to observation of the system, since W.(+) is an observation map
and W (z) 1is the output.
Step n.4 consists of updating the input according to the observed quantity; in other
words information is feedback from output to input.
Among the stopping conditions appearing in step n.5 the following are considered:
- an upper bound on the number of iterations, k
- a lower bound, Jm(min)' for the objective function

- a lower bound, |J for the modulus of the derivative (see §II11.2).

mz(min)l‘
Without going into further details, we point out that both analytical and physical
considerations play a role in determining Jm(min)' Let us assume that the minimum
detectable energy in a given V 1is known: this value may then be assigned to Jz(nln)'
From an analytical viewpoint, Jn(min) can be related to the modelling error, which
affects all field functions, since (2.10) and its counterpart for the electric field are

replaced by the sum of the first two terms. With reference to W, J1(min) is chosen as

the best upper bound of the energy density due to the neglected terms (n 2> 2 in (2.10)).

-14=
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We now congider the well-posedness of the minimization problem.

-

Existence of at least one z 1is insured by the economical term defined above. Moreover,

z continuously depends on the problem parameters, e.g. the observation point coordinates,

because T of (3.8) is smooth and all of the Ja'8 are continuous functions of z in
Zad.
Uniqueness of 2z cannot be proved in a straightforward way. Other properties of ;

appear when the first order derivatives of Jm's are studied.

I11.2. The derivatives of Jy W.r. to =z

We notice that all of the Jm's are continuous real valued functions of a complex

quantity, 2z, where a field vector and its complex conjugate always appear together.

e”

Since E(*) depends on z alone and !.(') depends on z', then it makes sense to

n_fad

consider both z and z" as independent variables.

il

4 %]

Let us denote by B, the derivative of B w.r. to 2z; then the first variation

of W, (*) reads:

O
‘;'I

1 > - * . * »
aw, = 0 [Co(l Edz + E,e * Edz ) + uo(- H, + Hyo * H dz )] =

= Re(J4,)dp - n“(J1z)dT ’

Y ’. I‘AC' -‘.. l".l .

* «
Jyg = €gE * E, + ugB + H, .

Similar expressions are obtained for the other physical terms; in particular

]
N

* * *
Jj, =8¢ (B xH) -8 * (B xR, (3.11)

v N
5

o

Jgp = By x B +E xB,) +n, (3.12)

where each of the Juz'Ss 18 a complex quantity, hereinafter called the “gradient® of

O

Jy Were to 2. The differential properties of I lead to the following result:

let z € Zaqe then Z = 0 is a locus of stationary points of Jn (for any m),

y -
Ve 5 s

which are either relative maxima or minima.

PLPII L,

wem .
CRCNON

The proof is straightforward: from the definitions (3.3) to (3.6) we get

J(z) = J(z'), where we have dropped the subscript m for simplicity. For a given [

-16=
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avay from the boundary of Zj; wve have J(PiT) = J(31-t)1 since J(+i*) 1is at least of
class ¢! w.r. to T, then aJ(p;1) = -aJ(0;-1)1 in particular a3(510) = 0.

Second order analysis is needed in general to tell whether at (310)J(3:&) attains a
local maximum or minimum. If we deal e.g. with Jy(*) and consider the analogy between
the reflection of spherical waves and the preliminary example of §I1.4, we could easily
show, without performing any computation, that real values of =z must yield local minima
of Jy. This intuitive conclusion is supported by a study of the Heasian matrix of Jqe
denoted by Vv23,, and defined by:

Jege

V23, - . (3.13)

vz Tzege

where J,, stands for the 2™ ,rder derivative of Jy w.r. to z. The 27 oraer

variation d231 of Jy then reads:

1z
a3, = (ae dz")(Vz.L,)( ) , (3.14)
4az*

alternatively, it can be expressed in terms of (d,dr):

d
a3, = (& ar) - ¥T8 . vy, . r-( ) (3.15)
dar
1 i
where T ;= and T°T® denotes the transpose of ¥. Let us now define
1 -1

B = TS . 7231 + %, then the elgenvalues of BH, Ay and 1i,, read:

Ay, 2" Jgge ¥ [9,g! - (3.16)
They are always real. Numerical computation is needed to evaluate them (see $§III1.4 and
III.5.4). At T = 0, ¥ € 2,, they are both strictly positive, hence T = 0 is a locus

of relative minima for Jqe

I11.3. The minimization algorithm

The algorithm introduced in $III.1 is implemented on the Aiscretized counterpart of

the original minimization problem. The rule which yields 2Kt € %Zaq A4t step n.d

-17=
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characterizes the steepest descent method with projection (Giannessi (12]; Pchenitchny &

Daniline [13] and reads:

k+1

k k
z = PZad(' -t

- @, (3.17)
where:
Jt is a function of the fields evaluated at the k-th iteration, according to
(3.10) and the like;
X is the updating step, chosen between the following quantities:
t* = min(a%/)3K12; |SK°Y (3.18)
Pyaa 18 the projection operator on 2,5, which enforces all constraints implied
either by (3.1) or by (3.2).
To assess the convergence of the {z"} sequence obtained from (3.17) we may apply a
theorem by Pch;nitchny & Daniline ({13}, p. 48). let &G g_zad be a subdomain where the

eigenvalues defined by (3.16)'aatisfy Xz > X1 > 0. We define:

AL 1= mén X,(p,x) ’
(3.19)
XU 1= mex Xz(p,t) .

then:

|25 - 2% < |20 - z|o|2xu/(xu - AL)l-(xU/xL)‘/zo((xU AL/ + XL))k*1 . (3.20)

On the other hand, if XL € 0, no general convergence property holds.

III.4. Structure of the computer code

A computer code which implements the theory presented so far has been written in the

FORTRAN ASCII language and developed on the Univac 1100/90 owned by CILEA at Segrate

(Milan, Italy).

In order to handle fields and their functions a suitable system of units is chosen,

s.t.

the wavelength, A, 4is the new unit of length,
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vacuum permittivity €5 and magnetic permeability Ug take on unit values,
z values are normalized to the free space impedance zy = (uo/co)1/2.

Data are suppl.el by the user in MKSA units, then automatically scaled. The computed
functions of the fields are printed out in MKSA units, 2z values are not scaled back.

The reference frame can be either centered at the source (§) or at the mirror image (O)
w.r. to the impedance plane. Coordinates can be supplied either in cartesian or polar
form.

The problem types which can be solved are:

- "direct”, i.e. computation of the discretized counterpart of J, in a given
(p1T) domain contained in 2,4

- "gtealth”, i.e. computation of ; defined by (3.7);

-~ gsome utility functions: a) computation of Hesaian eigenvalues according to (3.16)
for given observation point and 2z values; b) computation of the reciprocal
condition number yu 3= A,/Az.

In connection with point observation, either J1 (see 3.3) or J3 of {(3.5) can be
chosen. If Iy (see 3.4) is to be computed, the user must specify the integration
volume. Up to now the choice is restricted to volumes enclosed between two spherical caps
centered at 0, which are completely defined by 6 parameters, i.e., see Figure 4:

Vo ((r,0,0)|ry € £ € ry; 0,<0C 0, 9, 0< 0, . (3.21)
A similar constraint holdas for the integration surface I, on which Jq4 of (3.6) is
defined.

As soon as coordinates are read in, it is checked that d, the distance from the
source S to the impedance plane, is larger than 100X and that every observation point
lies in D.

If a "direct” problem is set, the corresponding value of In is computed for as many
times as required by the user, who enters the upper and lower values of p and t and

the number of parts into which both intervals must be divided.
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Figqure 4. A typical integration volume

If a "stealth"™ problem is specified, the admissible

chosen; then zo and some more parameters must be given.

in 734 and in 754 will be referred to hereinafter by "unconstrained” and “constrained®

respectively.
Numerical integration implied by (3.4) and (3.6) is
based on optimal partitioning of the integration domain,
Minimization is carried out as described in §III.3.
(3.18) is chosen in a fast search phase. If the updated

in 2,4, or if 3(zX*1 > JK,

approximated by a parabola, as described by Lemarechal [15]. Function gradients needed at

-20=

X

related to Jy.

set, (3.1) or (3.2) must be

For simplicity, mii.'mization

performed by the XOROBO routine,
due to Zakrzewska et al. [14].
Actually the rule based on

value zk+1 of (3.17) is not

then a slow search is performed, by which R locally
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every minimization step are evaluated numerically from the field component derivatives
w.r. to 2z, which are obtained from (2.12) to (2.19) and lead to the procedure shown in
Table I. Second order z derivatives of Jy, which we do not show here for simplicity,

are also needed to evaluate A1'2 of (3.16).

Table 1. The computation of a field component z-derivative as implemented in the code

Define:
€9z Elz
E, 1= eikt ikl ng, L™ .
oz iz

Consider the lst component, Ez:

Egz = vOzcosO - woninﬂsino

E4g = (Vqz = Vog ° ™ V)cosd - (wq, =~ ¥oz ° r~Vyainfsine -

= (vzp8ind + wy,qcosdsing) =t - (WhzecO8R) ¢ 1,

where (see (2.13))

1 1

Vo = [(R = TEX,) ¢ £~ = vg)] *+ V"1

woy = PYp * r=! ¢ sind ;

1

~ ..1

vig = 2BV 4B =B - VAT (P
Explicitly:
T = —UggR - 2RgUy + 2UR - P(TggX + 2TgXy *+ XgoT) + 2X(T"P = S°R,) +
+ [R = P(T4X + XgT')]cosd ;
D = 2U4[UgR + URg + P(XTg + XgT)] = (UR + BXT) * (1 + 20971 <y
from which Ez'Bz are obtained.

Note: The subscript denotes the partial derivative w.r.t, the corresponding variable;

the prime (') division by sind, tha double prime (") division by sinzb.

No quantity is singular at & = 0.

21~
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Computational results are written out, when applicable, as printer graphs or as data

files, which can be further processed by a graphics package, as we shall show in the next

Section.

III.S. Some computational results

Remark: All numerical values are given in MKSA units and all computations have been

carried out in single precision arithmetics.

II1.5.1. Symmetry properties of J,

The following symmetry properties of J, are easily verified and numerically
checked:
J4(8 = 0; p = (1,0,0)) = I (0 = 0; p=(0,1,0)), V,d,r,0, Vz € Zq , (3.22)
J4(0 = 1; 9 =73 p=(0,1,0)) = J(8 = 1; 9 =u/2; p=(1,0,0)), WN,d,r, ¥z € Z,4 « (3.23)
Polarization effects are easily evaluated numerically. As expected, if 6 ¥ 0, the

direction of p affects J4. E.g. for A =1, d= 100, r = 200, 6 = 1 rad, ¢ =0,

p =T =300 ohm, p= (1,0,0) vyields Jy = 1.11E + 2 J/m3, whereas p = (0,1,0) ylelds-

Jq = 1.35E + 2.

II1.5.2. Direct problem solutions

Figure 5 shows that the minimum of Jy at 1 = 0 shifts to lower values of p as
6 1increases from 0 to 1 rad.

Table 11 gives the values of z (ohm) which yield the minimum and maximum of Jy in
the specified domain. The uncertainty of the values depends on 2z = domain
discretization. More accurate figures are obtained by minimizing J1, as discussed in
§111.5.3.

The other objective functions are studied in a similar way. Results are shown by

Figures 6, 7, 8.
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Figure 5. ®Energy density W, as a function of (pst) for some values of 5. In all

i cages A = lm; d = 100my r = 2d; 9 = 0; p = (1,0,0) Vs; 100 < p < S00 ohm;

0 < 1T < 300 ohm. Some relevant values of w1(p,116) are given by Table 1II.




Table 1I. Some results yielded by the direct problem solver applied to Wy
A=1m; 4 = 100m; r = 200m; 9 = 0 rad.

1073 < p < 100; 0 < T < 300 ohm

Yimin 2t (P at  (p

%imax

(3/m3) (ohm) (3/m3)

< 5E 376 .51E
SE 366 -47E
SE 328 -38E

SE «27E

S5E « 16E

The typical CPU time needed to compute 484 values of J, or 33 is 0.45 s. It

becomes about 30 times longer when Jy, or J, are processed, because the above mentioned

integration routine must be called.

IIXI.5.3. Minimization of the objective functions

Tables III and IV refer to the minimization of J;. The terms “unconstrained" and
"constrained™ have been defined in §III.4. We notice that the machine precision limit is
achieved in the "unconstrained™ case, typically after 30 iterations. Given z0 = 100 ohm,

a

the convergence of {zk} towards z is s.t. |zk -2

-4
exact 0 for

exact !/ (Zexace) < 1
x > 16.

In order to determine 2z in the "constrained" case (p =71), the example of §I.4 is

again of some help. If we gset a = n/2 in (1.18), (1.19) and consider the minimization

of BR . ﬂ;, to which J1 of (3.3) is proportional, we get:

5 = zo//— . (3.24)

In passing we note that Gs/x = 1/7 Y2 in this case. The 2z value just given must be

compared to the computed ones in line 1, columns 3 and 5 of Table III and with the whole
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column 8 of Table IV. Convergence speed of {zX} is similar tc that of the

“unconstrained" case. Values of p for different observation angles cannot be determined

with equal ease.
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Figure 6. Time averaged electromagnetic energy in a volume, Jz.

200 € r € 201m; 0 < 8 < 0.5 rads 0 < @ € 0.5 rad; p = (1,0,0) Vs;

100 € p € 1000 ohmy 0 € t € 1000 ohm; (p,t) domain divided into a

net. Minimum plotted value J,.,. = 0.008 J at =z = (360 + 10) ohm.

Maximum plotted value Jomax = 0:8J at =z = (100 + 11000) ohm.
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Figure 7. Time averaged squared modulus of Poynting vector at a point, Jj. A,4 as

above; r = 200m; @ = ¢ = 0 (source point); p as above; (p:t) range of

a0

values and domain discretization as above. Minimum plotted value J4.4, ¢ .63E
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Time averaged flux of Re(8) through a surface, Jge A, as abovey r = 200m;
0< 98<0.5rad; 0< o € 0.5 rad; p as above; (p,t) range of values and
domain Aiscretization as above. Minimum plotted value Jg.;. < .72 + 11W  at
z = 360 + i0 ohm. Maximum plotted value Js .. = -7E + 14W at

z = 100 + 11000 ohm.
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Table III. Minimization of J4: optimal values of 6 vs. 0

A = Im; 4 = 100m; ) - Bad (11010)

Va; ¢ =

Re z := 8 in units of /uo/co .

0 rad

uncongtrained: Re z and Im z independent; constrained: Re z = Im z
0 (rad) r = 200m r = 400m
unconstr. constrained unconstr. constrained
0 1.0000 0.70708 1.0000 0.70708
(source point)
0.25 0.96891 0.68509 0.96891 0.68509
0.50 0.87758 0.62048 0.87758 0.62048
0.75 0.73169 0.51734 0.73169 0.51731
1.00 0.54030 0.38196 0.54030 0.38199
1.30 n.a. n.a. 0.26750 0.18906

Table IV. Minimization of J4

computed optimal values p

A= 1m; r =23 6 =9 = 0; p=(1,0,0)

k’rk

unconstrained

20 = (.265; 0,0)

at source for different values of 4

Vs

are given in units of /uO/E:;

constrained

20 = (.2652 - 2; 0.0)

a 79 ok k % 1ast 79 pk =1k gk last
(m) ! (3/m3)  (n.u.)  (n.u.) (3/m3) 1t.(%) (3/m3) (nous)  (I/md)  it.(x)
100 {.26E + 3 1.0000 =.2E - 13 .71E - 27 40 2B+ 3 .70708 .34E + 2 13
200 [.66E + 2 1.0000 =-.8% - 13 .29E - 26 37 L19E + 3 ,70708 .34E + 2 13
400 [.16E + 2 1.0000 =-.3E - 12 .11E - 25 34 J48E + 2 .70708 .B4E + 1 1S
800 |.41E + 1 1.0000 =-.1E - 11 .60E - 25 31 2B+ 2 L70T15 L21E+ 1 14
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The typical CPU time required by a 30 iteration run is 0.25 a. The minimization of
Jy 1is carried out in a similar way and requires comparable CPU times. Some results are
shown by Table V. Given e.g. zo = 1000 ohm, the convergence speed of (zk) is slightly
higher in the “"unconstrained” case and lower in the "constrained® one. The values of ;
computed by "constrained®™ minimization of Jy and J, agree to within 3 decimal places
(compare line 1, column 8 of Tables IV and V), which is an accuracy test for the computer
code and its iwplementation.

J; and J; are dealt with by the same procedure, although for sake of brevity the

results are not presented.

Table V. Minimigation of 33 at source for different values of d
A= 1m; r=24; 6 =9 =0; p=(1,0,0) Vs

computed optimal values pk.tk are given in units of Juo/co

unconstrained constrained
2% = (2.652; 0.0) 20 = (.2658 - 2; 0.0)
4d /.1? pk = /J_‘;' last Q 8% = X /J_§ last
(m) | (wm?)  (n.u.)  (neue) (we?)  tu(x) | (wam?)  (n.oua)  (wm?)  it.(k)
100 | .49E + 11 1.000 .19 = 7 .29% - 1 20 <23B + 12 .70746 .40E + 11 50
200 | .12E + 11 1.000 .16 - 7 .728 - 2 20 .59E + 11 .71075 .10E + 11 30
400 | 31K + 10 1.000 .15E =7 .18E = 2 20 S158 + 11 .71082 .258 + 09 30
800 .77 + 09 1.000 .14E = 7 .4SE - 3 20 <36E + 10 .71085 .63E + 09 30

II1.5.4. The attraction domain of the minimization algorithm
Although the condition number criterion (3.20) applies wherever AL > 0, the
algorithm is shown to yield a convergent sequence even if the starting value is well

outside the subdomain G of (3.19)., Minimization of Jy at source is successful in the

domaini

Ay,
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1074 < p% < 104 ohm ,
(3.25)
0<p9%< 10% ohm .

This is due to the fast search rule (3.18), which however becomes less effective when

Itkak'l << 'zk|. This occurs when J“/ldk >> 1, because the cost function is rather
z z

"flat" at points far away from a minimum.
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